#### 東京大学大学院 医学系研究科 公共健康医学専攻 生物統計学分野 Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo

#### 東京大学 医学部 健康総合科学科 疫学・生物統計学教室

Department of Epidemiology and Biostatistics, School of Integrated Health Sciences, Faculty of Medicine, The University of Tokyo

#### Biostatistician -The best job of the 21st century?

Marc Buyse, ScD San Francisco, CA

March 14, 2018







#### U.S. News Top 10 Jobs of 2018

- 1. Software Developer
- 2. Dentist
- 3. Physician Assistant
- 4. Nurse Practitioner
- 5. Orthodontist
- 6. Statistician
- 7. Pediatrician
- 8. Obstetrician and Gynecologist (tie)
- 9. Oral and Maxillofacial Surgeon (tie)
- 10. Physician (tie)

# Menu

Statistician... one of the « top jobs of 2018 »

- Statistician... or biostatistician?
- Statistician... or data scientist?
- Statistician... or simply researcher?

I will illustrate my talk with three examples that I am familiar with. They are not meant to be representative or exhaustive...



#### U.S. News Top 10 Jobs of 2018

| # Jobs  |
|---------|
| 250,000 |
| 23,000  |
| 40,000  |
| 56,000  |
| 1,100   |
| 12,400  |
| 5,300   |
| 3,900   |
| 1,200   |
| 8,400   |
|         |

https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs

https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs



#### **U.S. News Top 10 Jobs of 2018**

|                                                                                                                                                                         | <u># jobs</u>                              | <u>salary (\$)</u>                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|
| <ol> <li>Software Developer</li> </ol>                                                                                                                                  | 250,000                                    | 100,000                                              |
| 2. Dentist                                                                                                                                                              | 23,000                                     | 153,000                                              |
| 3. Physician Assistant                                                                                                                                                  | 40,000                                     | 102,000                                              |
| 4. Nurse Practitioner                                                                                                                                                   | 56,000                                     | 101,000                                              |
| 5. Orthodontist                                                                                                                                                         | 1,100                                      | 208,000                                              |
| 6. Statistician                                                                                                                                                         | 12,400                                     | 85,000                                               |
| 7. Pediatrician                                                                                                                                                         | 5,300                                      | 167,000                                              |
| 8. Obstetrician and Gynecologist (tie)                                                                                                                                  | 3,900                                      | 208,000                                              |
| 9. Oral and Maxillofacial Surgeon (tie)                                                                                                                                 | 1,200                                      | 208,000                                              |
| 10. Physician (tie)                                                                                                                                                     | 8,400                                      | 197,000                                              |
| <ol> <li>Orthodontist</li> <li>Statistician</li> <li>Pediatrician</li> <li>Obstetrician and Gynecologist (tie)</li> <li>Oral and Maxillofacial Surgeon (tie)</li> </ol> | 1,100<br>12,400<br>5,300<br>3,900<br>1,200 | 208,00<br><b>85,00</b><br>167,00<br>208,00<br>208,00 |

https://money.usnews.com/careers/best-jobs/rankings/the-100-best-jobs

#### Someone seeks help to analyze data...

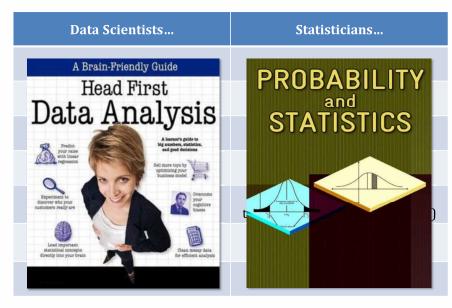
| Data Scientists                                                                | Statisticians                                                               |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| say the data look interesting                                                  | say there was no proper design                                              |
| make interesting findings                                                      | reject null hypotheses                                                      |
| make interesting findings                                                      | fail to reject null hypotheses                                              |
| believe that more data means<br>less errors                                    | believe that more data means more errors                                    |
| do not pretend they understand<br>what they do                                 | pretend they understand what they do (but you don't)                        |
| generate statements that look<br>really interesting but are<br>probably untrue | "generate statements that are<br>probably true and<br>definitely useless" * |

<sup>\*</sup> Stephen Senn, http://www.senns.demon.co.uk/wdict.html

#### The New York Times

TECHNOLOGY

#### For Today's Graduate, Just One Word: Statistics

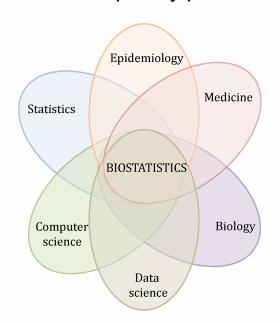

By STEVE LOHR AUG. 5, 2009



# Data Scientist: The Sexiest Job of the 21st Century

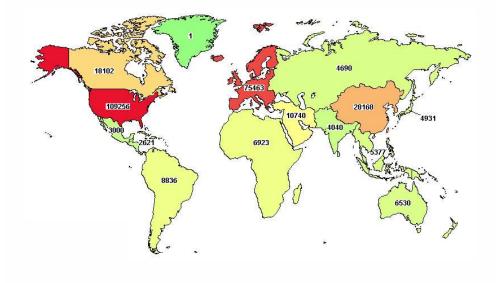
by Thomas H. Davenport and D.J. Patil FROM THE OCTOBER 2012 ISSUE

#### Statisticians have a « marketing » problem



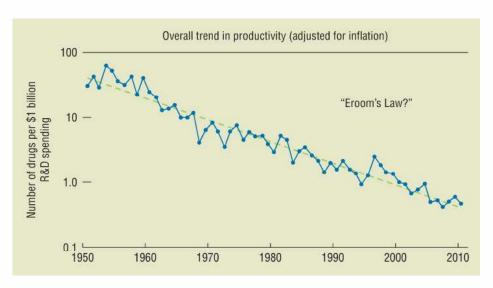

#### Two complementary professions

| Data Scientists needed for                             | Statisticians needed for                                   |
|--------------------------------------------------------|------------------------------------------------------------|
| Discovery (finding the unexpected)                     | Testing (confirming the anticipated)                       |
| Exploring big, poorly structured, messy data           | Designing controlled experiments to generate reliable data |
| Correcting errors using future data                    | Controlling errors using current data                      |
| Implementing efficient algorithms for machine learning | Generating reliable evidence for human learning            |


Can the two cooperate?

#### A multidisciplinary profession




#### Statistician... or biostatistician?

#### > 235,000 on-going clinical trials worldwide



Source: clinicaltrials.gov

#### Development cost per new drug > 1 BN \$



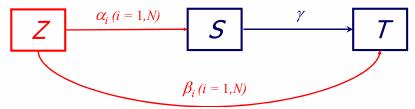
Ref: Scanning et al, Nat Rev Drug Discov 11: 191 (2012).

#### Surrogate endpoints

- Clinical context: can new treatments be assessed using earlier endpoints (or biomarkers) instead of later clinical endpoints?
- Potential: months or years of development time gained
- Statistical challenges:
  - Reliable predictions are hard!
  - Complex modeling
  - Association *vs.* causation

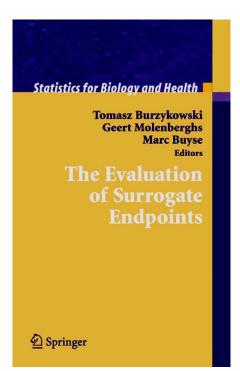
#### Development cost per new drug > 1 BN \$

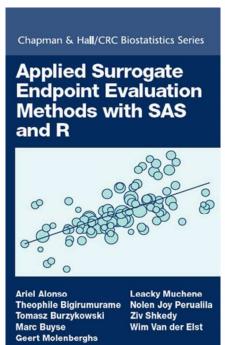
#### Clinical development


- too lengthy
   too costly
   too risky
   Surrogate Endpoints
   Central Statistical Monitoring
- inadequate for precision medicine
- inadequate for personalized medicine

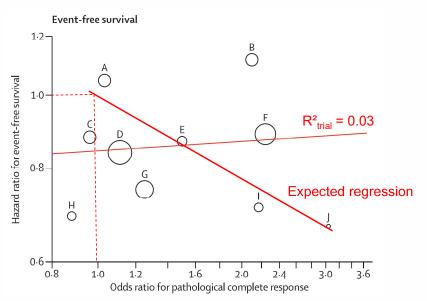
Generalized
Pairwise
Comparisons

#### Evaluation of surrogate endpoints


Effects of treatment on surrogate

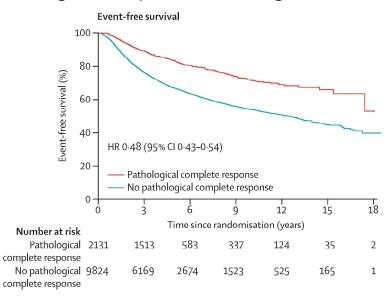

Effect of surrogate on true endpoint




Effects of treatment on true endpoint

S and T must be correlated ("individual-level surrogacy")  $\alpha$  and  $\beta$  must be correlated ("trial-level surrogacy")






#### Is pathological response a surrogate for survival?



Ref: Cortazar et al, Lancet 2014.

#### Is pathological response a surrogate for survival?



Ref: Cortazar et al, Lancet 2014.

#### Surrogate endpoints

Hierarchical models (G Molenberghs)

Errors-in-variables models

(T Burzykowski)

Copulas

(T Burzykowski)

Information theory

(A Alonso)

Bayesian models

(Z Shkedy)

Causal inference

(A Alonso)







Interuniversity Institute for Biostatistics and statistical Bioinformatics

#### Surrogate endpoints

#### Breadth

| Initial datasets                           | <b>Cooperative Groups</b>                                                                            | Pharma                                                                         | Agencies                                   |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|
| Oncology<br>Ophthalmology<br>Schizophrenia | MAGIC – colorectal<br>(P Piedbois)<br>GASTRIC – stomach<br>(K Oba, X Paoletti)<br>ARCAD – colorectal | BMS – Lung<br>Roche – Breast<br>Novartis – AML<br>Boehringer –<br>Mesothelioma | FDA<br>IQWiG                               |
|                                            | (D Sargent) ICECaP – prostate (C Sweeney) EORTC – melanoma (S Suciu)                                 | IQWIG<br>and effic                                                             | Institute for Quality iency in Health Care |

Statistician... or data scientist?

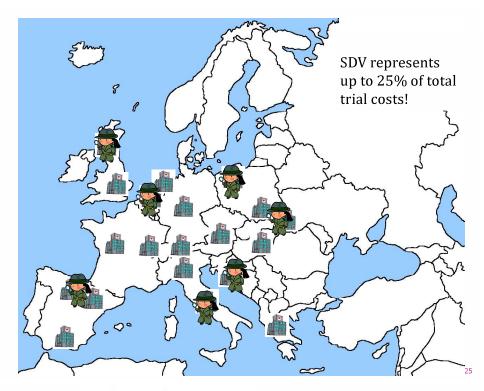
#### Surrogate endpoints

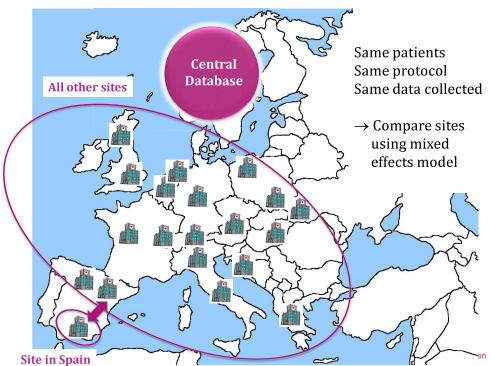


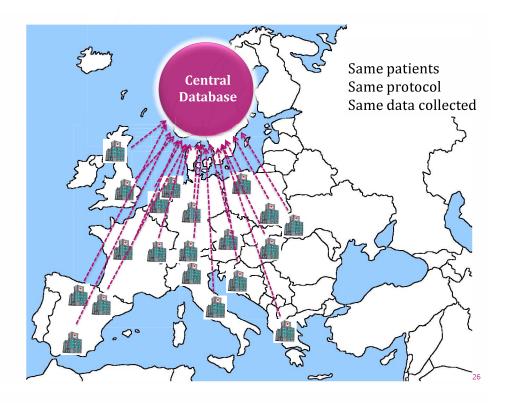


REVIEW

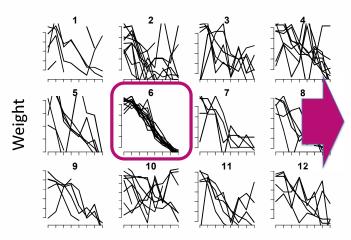
### Disease-Free Survival as a Surrogate for Overall Survival in Adjuvant Trials of Gastric Cancer: A Meta-Analysis


Koji Oba, Xavier Paoletti, Steven Alberts, Yung-Jue Bang, Jacqueline Benedetti, Harry Bleiberg, Paul Catalano, Florian Lordick, Stefan Michiels, Satoshi Morita, Yasuo Ohashi, Jean-pierre Pignon, Philippe Rougier, Mitsuru Sasako, Junichi Sakamoto, Daniel Sargent, Kohei Shitara, Eric Van Cutsem, Marc Buyse, Tomasz Burzykowski; on behalf of the GASTRIC group


Manuscript received February 12, 2013; revised July 25, 2013; accepted July 25, 2013.


Correspondence to: Koji Oba, PhD, Translational Research and Clinical Trial Center, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 0608648, Japan (e-mail: k.oba@huhp.hokudai.ac.jp).

#### Central statistical monitoring


- Clinical context: can central statistical monitoring help eliminate source data verification (SDV) and target on-site monitoring visits?
- **Potential**: cut clinical trial budgets by up to 25%
- Statistical challenges:
  - Use data consistency across sites as proxy for quality
  - Allow for natural / expected variability
  - Translate statistical findings into actionable signals







#### CSM compares each site with all others



Time

Perform all possible statistical tests on all distributional characteristics for all variables

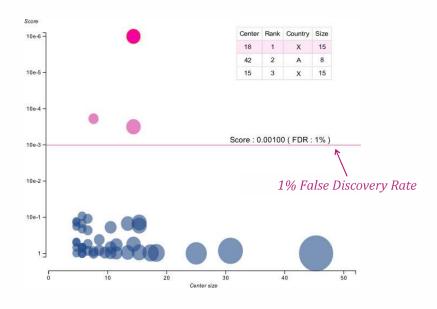
無断転載・無断使用を禁じます。 UNAUTHORIZED COPYING AND REPLICATION ARE PROHIBITED.

#### $(S \times T)$ *P*-value matrix

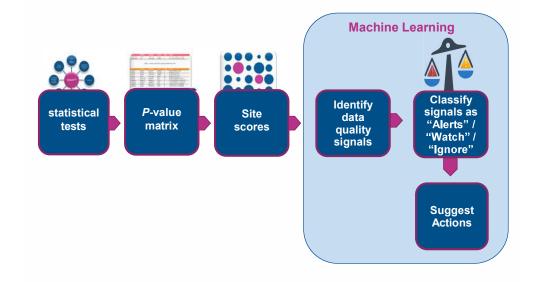
|      |                   | Var <sub>1</sub> |                   |                   | Var <sub>2</sub> |                   |     | Var <sub>v</sub> |
|------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-----|------------------|
| Site | Test <sub>a</sub> |                  | Test <sub>c</sub> | Test <sub>d</sub> |                  | Test <sub>f</sub> |     |                  |
| 1    | $p_{11}$          | $p_{12}$         | •••               |                   |                  |                   | ••• | $p_{1T}$         |
| 2    | $p_{21}$          | •••              |                   |                   |                  |                   |     | •••              |
|      | •••               |                  |                   |                   |                  |                   |     |                  |
| S    | $p_{S1}$          | •••              |                   |                   |                  |                   | ••• | $p_{ST}$         |

Score sites 
$$\tilde{p}_k = [p_{11} \cdot p_{12} \cdots p_{ST}]^{1/T}$$
  
Resampling  $s_k = P[x_k \le \tilde{p}_k]$ 

#### Operating characteristics


# Unsupervised statistical monitoring for the detection of atypical data in multicenter clinical trials

Journal Title
XX(X):1-5

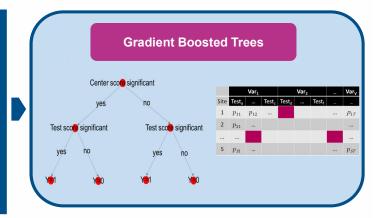

©The Author(s) 2018
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/T0BeAssigned
www.sagepub.com/

Laura Trotta, PhD<sup>1,\*</sup>, Yuusuke Kabeya, MSc<sup>2,\*</sup>, Marc Buyse, ScD<sup>3,4</sup>, Erik Doffagne, MSc<sup>1</sup>, David Venet, PhD<sup>5</sup>, Lieven Desmet, PhD<sup>6</sup>, Tomasz Burzykowski, PhD<sup>7,8</sup>, Akira Tsuburaya, MD<sup>9</sup>, Kazuhiro Yoshida, MD<sup>10</sup>, Yumi Miyashita<sup>11</sup>, Satoshi Morita, PhD<sup>12</sup>, Junichi Sakamoto, MD<sup>11,13</sup>, Paurush Praveen, PhD<sup>1,\*</sup> and Koji Oba, PhD<sup>2,\*</sup>.

#### Example: 3 centers with highly atypical data



#### Machine learning helps create « signals »






#### P-values are tagged for « signals »

# Test type P-value P-value rank Center score Center rank Nr patients Domain name\* Variable name Observed

**Expected** 

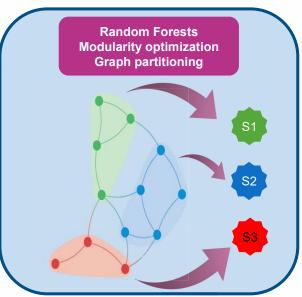


Domain = Demography, Physical Examination, Exposure, Adverse Events, Outcome, ...

#### CluePoints for quality control

# THE LANCET Oncology

"The CluePoints® statistical monitoring software (CluePoints Inc., Cambridge, USA) was applied to check the quality and consistency of the clinical data across all participating centres. CluePoints® did not detect atypical data patterns at some of the participating centres that could have had a significant impact on the efficacy and safety analyses of the trial."


P-values are grouped into « signals »

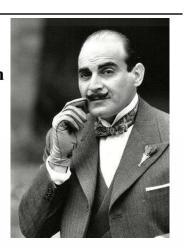
Features

50 trials

 $\sim 10^7$  tests

Test type
P-value
P-value rank
Center score
Center rank
Nr patients
Domain name\*
Variable name
Observed
Expected




#### CluePoints for « detective » work

Gastric Cancer (2016) 19:21-23 DOI 10.1007/s10120-015-0555-3

#### **EDITORIAL**

A Hercule Poirot of clinical research

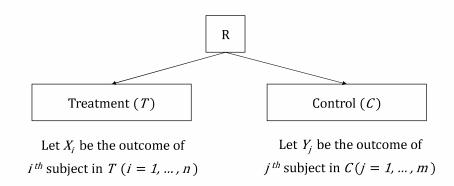
Junichi Sakamoto<sup>1</sup>



Ref: Tsuburaya et al. Lancet Oncology 2014.

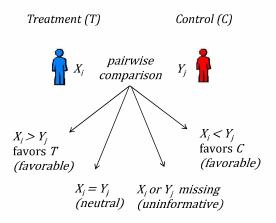
Ref: Sakamoto. Gastric Cancer 2016.

#### Statistician... or simply researcher?


#### Current analyses of randomized clinical trials

- A single (« primary ») endpoint drives decision-making
- Composite endpoints consider time to *first* event, instead
   of time to *most relevant* endpoint
- Other (« secondary ») endpoints are analyzed descriptively
- Safety endpoints / adverse are informally balanced against efficacy, resulting in debatable risk / benefit analyses
- Patient preferences are not formally taken into account

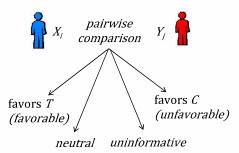
#### Generalized pairwise comparisons


- **Clinical context**: can all outcomes measured in randomized clinical trials be used in a single, patient-relevant, measure of treatment effect?
- Potential: pave the way to personalized medicine
- Statistical challenges:
  - Paradigm shift away from population parameters
  - Only tractable analytically in simplest cases
  - Interpretational difficulties *e.g.* with censoring

#### Randomized clinical trial



#### Pairwise comparisons


Assume a continuous outcome measure



Ref: Buyse, Stat Med 29:3245, 2010.

#### Any single outcome measure

Now let  $X_i$  and  $Y_j$  be observed outcomes for any outcome measure (continuous, time to event, binary, categorical, ...)



#### Mann-Whitney form of the Wilcoxon test

The Wilcoxon test statistic can be derived from consideration of all possible pairs of subjects, one from each treatment group.

Let

$$U_{ij} = \begin{cases} +1 & \text{if } X_i > Y_j \\ -1 & \text{if } X_i < Y_j \\ 0 & \text{otherwise} \end{cases}$$

$$U = \frac{1}{m \cdot n} \sum_{i=1}^{n} \sum_{j=1}^{m} U_{ij}$$

The Wilcoxon-Mann-Whitney test statistic W can be written as

$$W = m \cdot n \cdot (1 - U)/2$$

#### Binary outcome measure

| Pairwise comparison |                                                | Pair is       |
|---------------------|------------------------------------------------|---------------|
|                     | $X_i = 1, Y_j = 0$                             | favorable     |
|                     | $X_i = 1$ , $Y_j = 1$ or $X_i = 0$ , $Y_j = 0$ | neutral       |
|                     | $X_i = 0, Y_j = 1$                             | unfavorable   |
|                     | $X_i$ or $Y_j$ missing                         | uninformative |

GPC test is equivalent to  $\chi^2$  test

#### Continuous outcome measure

| Pairwise comparison    | Pair is       |
|------------------------|---------------|
| $X_i - Y_j > \tau$     | favorable     |
| $ X_i - Y_j  \le \tau$ | neutral       |
| $X_i - Y_j < -\tau$    | unfavorable   |
| $X_i$ or $Y_j$ missing | uninformative |

 $\tau = 0$  is Wilcoxon test

 $\tau$  can be chosen to reflect clinical relevance

#### Several prioritized outcome measures

| Outcome with higher priority | Outcome with lower priority | Pair is     |
|------------------------------|-----------------------------|-------------|
| favorable                    |                             | favorable   |
| unfavorable                  |                             | unfavorable |
| neutral or ?                 | favorable                   | favorable   |
| neutral or ?                 | unfavorable                 | unfavorable |
| neutral or?                  | neutral                     | neutral     |
| ?                            | ?                           | ?           |

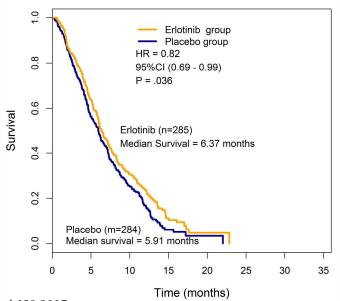
#### Time to event outcome measure

| Pairwise comparison                         | Pair is       |
|---------------------------------------------|---------------|
| $X_i - Y_j > \tau$ or $X_i' - Y_j > \tau$   | favorable     |
| $ X_i - Y_j  \le \tau$                      | neutral       |
| $X_i - Y_j < -\tau$ or $X_i - Y_j' < -\tau$ | unfavorable   |
| otherwise                                   | uninformative |

 $\tau = 0$  is Gehan test

 $\tau$  can be chosen to reflect clinical relevance

#### Thresholds of clinical relevance


| Survival difference > 12 months | Survival difference ≤ 12 months | Pair is     |
|---------------------------------|---------------------------------|-------------|
| favorable                       |                                 | favorable   |
| unfavorable                     |                                 | unfavorable |
| neutral or?                     | favorable                       | favorable   |
| neutral or?                     | unfavorable                     | unfavorable |
| neutral or?                     | neutral                         | neutral     |
| ?                               | ?                               | ?           |

#### Benefit / risk analyses

| Survival    | Serious toxicity (e.g. CTC grade 3/4) | Pair is     |
|-------------|---------------------------------------|-------------|
| favorable   |                                       | favorable   |
| unfavorable |                                       | unfavorable |
| neutral or? | favorable                             | favorable   |
| neutral or? | unfavorable                           | unfavorable |
| neutral or? | neutral                               | neutral     |
| ?           | ?                                     | ?           |

Ref: Buyse, Stat Med 29:3245, 2010.

#### Survival benefit of erlotinib



Ref: Moore et al. JCO 2007.

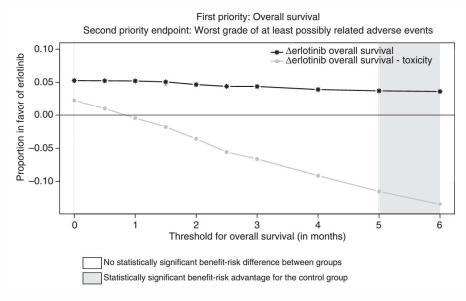
The net treatment benefit  $\Delta$ 

$$U_{ij} = \begin{cases} +1 & \text{if } (X_i, Y_j) \text{ pair is favorable} \\ -1 & \text{if } (X_i, Y_j) \text{ pair is unfavorable} \\ 0 & \text{otherwise} \end{cases}$$

$$U = \frac{1}{m \cdot n} \sum_{i=1}^{n} \sum_{j=1}^{m} U_{ij}$$

U is the difference between the proportion of favorable pairs and the proportion of unfavorable pairs. It is the « net treatment benefit », denoted  $\Delta$ .

This measure is analogous to Pocock's « win ratio » ( $\Delta$  is the « win difference »).


Ref: Pocock et al. Eur Heart J 33: 176, 2012.

#### Toxicities of erlotinib

| Worst grade<br>related AE | Erlotinib group (n=282) | Placebo group (n=280) |
|---------------------------|-------------------------|-----------------------|
| Grade 1                   | 48 (17%)                | 69 (24.6%)            |
| Grade 2                   | 118 (41.8%)             | 89 (31.8%)            |
| Grade 3                   | 29%                     | 19%                   |
| Grade 4                   | 29 /0                   | 19 /0                 |
| Grade 5                   | 4 (1.4%)                | 3 (1.1%)              |

51

#### Prioritized outcomes: OS and worst toxicity



Ref: Peron et al. BJC 2015.

#### Personalized medicine



So what is Personalized Medicine?

It's health care tailored by you.



#### THE PRECISION MEDICINE INITIATIVE



So what is Precision Medicine?

It's health care tailored to you.

#### BENEFIT - Biostatistical Estimation of Net Effects For Individualization of Therapy











55

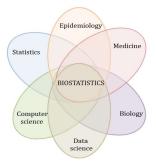








56


Interuniversity Institute for Biostatistics and statistical Bioinformatics

#### Personalized medicine



#### Acknowledgments

I gratefully acknowledge help and inspiration from the individuals mentioned in this talk, and many others. The job of a biostatistician is by nature collaborative. Which makes it one of the best jobs of the 21<sup>st</sup> century.



The quiet statisticians have changed our world - not by discovering new facts or technical developments but by changing the ways that we reason, experiment and form our opinions...

Ian Hacking